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Parallel channels arise in many practical scenarios: multicarrier
transmission, rate-compatible puncturing of turbo-like codes,
bit-interleaved coded modulation (BICM), ...

One binary encoder/decoder pair is often used for simplicity
e Here: spatially coupled LDPC codes and belief propagation (BP) decoding

e The bit mapper determines the allocation of code bits to the channels

Main question

How much gain is possible by optimizing the bit mapper compared to a
uniformly random mapper in the asymptotic setting (infinite block length)?
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e For circular ensemble, R =1 — d,/dc (no rate loss)
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e For BECs, density evolution is simple: Track the evolution of the VN
erasure probabilities at all positions j.
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e For BECs, density evolution is simple: Track the evolution of the VN
erasure probabilities at all positions j. For the [th BP iteration we have:
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o For Ayni, we have ¢/ = 0.5e; + 0.5e; = &, Vj
e For two-sided (3,6, 10,2) ensemble, £*(A) =~ 0.488
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AcAmxl
o Difficult, due to computational cost of one threshold computation
o Alternative iterative optimization to find good bit mappers:

1. Initialize € to the threshold of the baseline bit mapper * (Auni)
2. Find A* that minimizes the number of decoding iterations until
convergence. Here, we use Differential Evolution
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o |deally, we would like to solve the problem

Ao = argmax  E°(A).
AcAmxl

o Difficult, due to computational cost of one threshold computation

o Alternative iterative optimization to find good bit mappers:
1. Initialize € to the threshold of the baseline bit mapper * (Auni)
2. Find A* that minimizes the number of decoding iterations until
convergence. Here, we use Differential Evolution
3. Calculate the new threshold. If it did not improve, stop, otherwise, go to
step 2
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Optimization Routine

Ideally, we would like to solve the problem

Ao = argmax  E°(A).
AcAmxl

Difficult, due to computational cost of one threshold computation

Alternative iterative optimization to find good bit mappers:

1. Initialize € to the threshold of the baseline bit mapper * (Auni)

2. Find A* that minimizes the number of decoding iterations until
convergence. Here, we use Differential Evolution

3. Calculate the new threshold. If it did not improve, stop, otherwise, go to
step 2

Significantly reduced computational complexity, however, Agps # A" in
general
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e First row (i = 1) of the optimized assignment matrices A" (fraction of
VNs at a particular position to be sent over the good channel)
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e Shaded regions correspond to the part where a decoding wave will start
(green), end (red), and propagate at roughtly constant speed (blue)
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(green), end (red), and propagate at roughtly constant speed (blue)

o lllustration of the iterative decoding behavior:
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