
ASIC Implementation of Digital Backpropagation
with Deep-Learned Chromatic Dispersion Filters

Christian Häger(1,2)

Joint work with: Christoffer Fougstedt(3), Lars Svensson(3),

Henry D. Pfister(2), and Per Larsson-Edefors(3)

(1)Department of Electrical Engineering, Chalmers University of Technology, Gothenburg
(2)Department of Electrical and Computer Engineering, Duke University, Durham

(3)Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg

TU/e, Eindhoven, May 18, 2018



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

1 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

2 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Digital Backpropagation

∂u

∂z
= −

β2

2

∂2u

∂t2
+ γu|u|2

nonlinear Schrödinger equation

z

0 L

• Invert a partial differential equation in real time ([Paré et al., 1996],

[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008])

3 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Digital Backpropagation

∂u

∂z
= −

β2

2

∂2u

∂t2
+ γu|u|2

nonlinear Schrödinger equation

z

0 Lδ 2δ · · ·

• Invert a partial differential equation in real time ([Paré et al., 1996],

[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008])

• Split-step Fourier method with M steps (δ = L/M):

Aδy ...

σδ(x) = xe−γδ|x|2
Kerr effect

D
F

T

... ID
F

T

Hk = e


β2
2

δω2
k chromatic dispersion (all-pass filter)

Aδ ...
bbb Aδ ...

≈ x

3 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

• Widely considered to be impractical (too complex)

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

• Widely considered to be impractical (too complex)

• To the best of our knowledge, no published power consumption results

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

• Widely considered to be impractical (too complex)

• To the best of our knowledge, no published power consumption results

• This work: 32-step DBP for 20 Gbaud over 3200 km (1 step per span)
requires roughly 6.6 W of power or ≈ 83 pJ/bit in 28-nm CMOS

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

• Widely considered to be impractical (too complex)

• To the best of our knowledge, no published power consumption results

• This work: 32-step DBP for 20 Gbaud over 3200 km (1 step per span)
requires roughly 6.6 W of power or ≈ 83 pJ/bit in 28-nm CMOS

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Is Split-Step Digital Backpropagation Feasible in DSP?

• Widely considered to be impractical (too complex)

• To the best of our knowledge, no published power consumption results

• This work: 32-step DBP for 20 Gbaud over 3200 km (1 step per span)
requires roughly 6.6 W of power or ≈ 83 pJ/bit in 28-nm CMOS

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm

Key ingredients

1. No FFT/IFFT: We use finite-impulse response (FIR) filters to compensate
for CD-induced pulse broadening in each step.

2. Deep learning: The FIR filters are jointly optimized and quantized using
machine-learning tools.

3. No step-reducing approaches: 64-step DBP (2 steps per span) would
consume only marginally more power, not 2× more.

4 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

5 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

• Intuitive, but . . .

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

• Intuitive, but . . .

• . . . this corresponds to flattening a deep (multi-layer) computation graph

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Complexity-Reduced Digital Backpropagation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

Extensive literature: [Du and Lowery, 2010], [Rafique et al., 2011], [Li et al., 2011],

[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

• Intuitive, but . . .

• . . . this corresponds to flattening a deep (multi-layer) computation graph

• Machine learning: deep computation graphs work much better and are
more parameter efficient than shallow ones

6 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)

parameters
to be optimized/learned

b
b
b

b
b
b

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

28 × 28 pixels =⇒ n = 784

7 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to choose fθ(y)? Deep feed-forward neural networks

W
(1)

b(1)

...

activation function

W
(2)

b(2)

...
bbb W

(ℓ)

b(ℓ)

...

7 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0
1
0
0
0
0
0
0
0
0

x

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to choose fθ(y)? Deep feed-forward neural networks

W
(1)

b(1)

...
W

(2)

b(2)

...
bbb W

(ℓ)

b(ℓ)

...

How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}? Deep learning

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk) (1)

7 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0
1
0
0
0
0
0
0
0
0

x

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to choose fθ(y)? Deep feed-forward neural networks

W
(1)

b(1)

...
W

(2)

b(2)

...
bbb W

(ℓ)

b(ℓ)

...

Aδ ...
Aδ ...

bbb Aδ ...

7 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0
1
0
0
0
0
0
0
0
0

x

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to choose fθ(y)? Deep feed-forward neural networks

W
(1)

sparse sparse sparse

b(1)

...
W

(2)

b(2)

...
bbb W

(ℓ)

b(ℓ)

...

dense dense dense

Aδ ...
Aδ ...

bbb Aδ ...

7 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Implementation and Truncation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

8 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Implementation and Truncation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

n ≫ 9

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h1

h0

h1

h2

h3

h4

h5

h6

h7

h8

h2

h1

h0

h1

h2

h3

h4

h5

h6

h7

h3

h2

h1

h0

h1

h2

h3

h4

h5

h6

h4

h3

h2

h1

h0

h1

h2

h3

h4

h5

h5

h4

h3

h2

h1

h0

h1

h2

h3

h4

h6

h5

h4

h3

h2

h1

h0

h1

h2

h3

h7

h6

h5

h4

h3

h2

h1

h0

h1

h2

h8

h7

h6

h5

h4

h3

h2

h1

h0

h1

h9

h8

h7

h6

h5

h4

h3

h2

h1

h0

· · ·

...

. . .

≈ 0

≈ 0

8 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Implementation and Truncation

Aδy ...
Aδ ...

bbb Aδ ...
≈ x

n ≫ 9

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h1

h0

h1

h2

h3

h4

h5

h6

h7

h8

h2

h1

h0

h1

h2

h3

h4

h5

h6

h7

h3

h2

h1

h0

h1

h2

h3

h4

h5

h6

h4

h3

h2

h1

h0

h1

h2

h3

h4

h5

h5

h4

h3

h2

h1

h0

h1

h2

h3

h4

h6

h5

h4

h3

h2

h1

h0

h1

h2

h3

h7

h6

h5

h4

h3

h2

h1

h0

h1

h2

h8

h7

h6

h5

h4

h3

h2

h1

h0

h1

h9

h8

h7

h6

h5

h4

h3

h2

h1

h0

· · ·

...

. . .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

finite impulse response (FIR) filter

symmetric filter coefficients
=⇒ folded implementation

h2

b D

h1

b D

h0

b D

h1

b D

h2

b

D

D

b

h2

D

D

b

h1 h0

b

8 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

?

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

?

[Fougstedt et al., 2017a]
[Fougstedt et al., 2017b]

[Häger and Pfister, 2018b]
[Häger and Pfister, 2018a]

[Martins et al., 2018]

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

?

[Fougstedt et al., 2017a]
[Fougstedt et al., 2017b]

[Häger and Pfister, 2018b]
[Häger and Pfister, 2018a]

[Martins et al., 2018]

Nontrivial to achieve a good performance–complexity tradeoff!

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

?

[Fougstedt et al., 2017a]
[Fougstedt et al., 2017b]

[Häger and Pfister, 2018b]
[Häger and Pfister, 2018a]

[Martins et al., 2018]

Nontrivial to achieve a good performance–complexity tradeoff!

Example for Rsymb = 10.7 Gbaud, L = 2000 km [Ip and Kahn, 2008]

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Time-Domain Digital Backpropagation: Literature

2010 2015 2018

[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
. . . operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT . . . with a linear filter”

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

?

[Fougstedt et al., 2017a]
[Fougstedt et al., 2017b]

[Häger and Pfister, 2018b]
[Häger and Pfister, 2018a]

[Martins et al., 2018]

Nontrivial to achieve a good performance–complexity tradeoff!

Example for Rsymb = 10.7 Gbaud, L = 2000 km [Ip and Kahn, 2008]

• ≫ 1000 taps required for good performance (70 taps per step)

9 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Problem: Truncation Errors

0

0.5

1.0

1.5

2.0

ω

m
a
g
n
it
u
d
e
re
sp

o
n
se

0 π
−π

h(1) = h(2) = · · · = h(M)

10 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Problem: Truncation Errors

0

0.5

1.0

1.5

2.0

ω

m
a
g
n
it
u
d
e
re
sp

o
n
se

0 π
−π

h(1) = h(2) = · · · = h(M)

0

0.5

1.0

1.5

2.0

ω

m
a
g
n
it
u
d
e
re
sp

o
n
se

0 π
−π

h(1) ∗ h(2) ∗ · · · ∗ h(M)

10 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Problem: Truncation Errors

0

0.5

1.0

1.5

2.0

ω

m
a
g
n
it
u
d
e
re
sp

o
n
se

0 π
−π

h(1) = h(2) = · · · = h(M)

0

0.5

1.0

1.5

2.0

ω

m
a
g
n
it
u
d
e
re
sp

o
n
se

0 π
−π

h(1) ∗ h(2) ∗ · · · ∗ h(M)

Our approach:
Optimize all M filters jointly

10 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

11 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

12 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

TensorFlow implementation of the computation graph fθ(y):

h(1) h(2) h(M)

Aδ ...

σ1(x) = xeγ1|x|2

Aδ ...

σ2(x) = xeγ2|x|2

bbb Aδ ...

σM (x) = xeγM |x|2

12 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

TensorFlow implementation of the computation graph fθ(y):

h(1) h(2) h(M)

Aδ ...

σ1(x) = xeγ1|x|2

Aδ ...

σ2(x) = xeγ2|x|2

bbb Aδ ...

σM (x) = xeγM |x|2

mean squared error Adam optimizer, fixed learning rate

Deep learning of parameters θ = {h(1), . . . , h(M)}:

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk)

12 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

h(1)

h(2)

...

h(M)

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

target length 2K + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

target length 2K + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

target length 2K + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K′ + 1

target length 2K + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]

• Typical learning curve:

6

8

10

12

14

gradient-descent iteration

e
ff
e
c
ti
v
e

S
N

R
(d

B
)

3000 5000 7000 9000

filter tap forced to
zero (pruning)

13 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

14 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

DSP implementation requires quantized FIR filter coefficients.

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

DSP implementation requires quantized FIR filter coefficients.

• Apply TensorFlow’s “fake quantization” to each filter coefficient variable:

.hr

.hi

to the rest of the computation graph

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

DSP implementation requires quantized FIR filter coefficients.

• Apply TensorFlow’s “fake quantization” to each filter coefficient variable:

.hr

.hi

to the rest of the computation graph

gradient computation

• Fake quantization: gradient computation and parameter updates are still
performed in floating point

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

DSP implementation requires quantized FIR filter coefficients.

• Apply TensorFlow’s “fake quantization” to each filter coefficient variable:

.hr

.hi

to the rest of the computation graph

gradient computation

• Fake quantization: gradient computation and parameter updates are still
performed in floating point

• Activate after the (floating-point) optimization has converged and
continue training for few more iterations

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Filter Coefficient Quantization

DSP implementation requires quantized FIR filter coefficients.

• Apply TensorFlow’s “fake quantization” to each filter coefficient variable:

.hr

.hi

to the rest of the computation graph

gradient computation

• Fake quantization: gradient computation and parameter updates are still
performed in floating point

• Activate after the (floating-point) optimization has converged and
continue training for few more iterations

• Joint optimization of quantized impulse responses =⇒ partial
cancellation of quantization-induced frequency-response errors

15 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

• Signal requantization to s bits after each FIR filter and nonlinear step

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

• Signal requantization to s bits after each FIR filter and nonlinear step

• Nonlinear steps via first-order Taylor expansion [Fougstedt et al., 2017a]:

xeγδℓ|x|2

≈ x(1 + γδℓ|x|2)

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

• Signal requantization to s bits after each FIR filter and nonlinear step

• Nonlinear steps via first-order Taylor expansion [Fougstedt et al., 2017a]:

xeγδℓ|x|2

≈ x(1 + γδℓ|x|2)

• 96-parallel VHDL implementation at 416.7 MHz clock speed (40 GHz RX
signal), synthesized using a low-power 28-nm CMOS library

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

• Signal requantization to s bits after each FIR filter and nonlinear step

• Nonlinear steps via first-order Taylor expansion [Fougstedt et al., 2017a]:

xeγδℓ|x|2

≈ x(1 + γδℓ|x|2)

• 96-parallel VHDL implementation at 416.7 MHz clock speed (40 GHz RX
signal), synthesized using a low-power 28-nm CMOS library

• All FIR filters are fully reconfigurable

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Hardware Model and Circuit Implementation

.
s

H(ℓ)(z)
s+9

.
s

b

.
s+a

.
s

5

xx∗
10

1+γδℓx
a

repeat M times

nonlinear step via
Taylor expansion

quantized filter
coefficients (8 bits)

• Signal requantization to s bits after each FIR filter and nonlinear step

• Nonlinear steps via first-order Taylor expansion [Fougstedt et al., 2017a]:

xeγδℓ|x|2

≈ x(1 + γδℓ|x|2)

• 96-parallel VHDL implementation at 416.7 MHz clock speed (40 GHz RX
signal), synthesized using a low-power 28-nm CMOS library

• All FIR filters are fully reconfigurable

• Power estimation based on simulation of internal circuit switching statistics

16 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

17 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Performance Results

10−4

10−3

10−2

10−1

launch power (dBm)

b
it

er
ro

r
ra

te

baseline LS-CO (25 taps)

−5 −4 −3 −2 −1 0 1

floating-point
signal & coeffs.

linear only

System parameters:

• 32 × 100 km fiber

• 16-QAM single pol.

• RRC pulses (0.1 roll-off)

• 20 Gbaud

• 2 samples/symbol

• single channel

18 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Performance Results

10−4

10−3

10−2

10−1

launch power (dBm)

b
it

er
ro

r
ra

te

baseline LS-CO (25 taps)

−5 −4 −3 −2 −1 0 1

floating-point
signal & coeffs.

linear only

launch power (dBm)

deep learning (15 taps)

−4 −3 −2 −1 0 1

floating-point
signal & coeffs.

linear only

System parameters:

• 32 × 100 km fiber

• 16-QAM single pol.

• RRC pulses (0.1 roll-off)

• 20 Gbaud

• 2 samples/symbol

• single channel

• Deep learning gives 15-tap filters with better performance

18 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Performance Results

10−4

10−3

10−2

10−1

launch power (dBm)

b
it

er
ro

r
ra

te

baseline LS-CO (25 taps)

−5 −4 −3 −2 −1 0 1

floating-point
signal & coeffs.

linear only

9-bit signal

8-bit signal

8-bit coeffs.

9-bit coeffs.

launch power (dBm)

deep learning (15 taps)

−4 −3 −2 −1 0 1

floating-point
signal & coeffs.

linear only

9-bit signal

8-bit signal

5-bit coeffs.

6-bit coeffs. System parameters:

• 32 × 100 km fiber

• 16-QAM single pol.

• RRC pulses (0.1 roll-off)

• 20 Gbaud

• 2 samples/symbol

• single channel

• Deep learning gives 15-tap filters with better performance

• 8–9 signal bits required in both cases, depending on performance

• Deep learning leads to significantly fewer bits for the filter taps

18 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Power (P ) and Chip Area (A) Results Per Step

coeffs. & filter 8-bit signal 9-bit signal
word length taps P (W) A (mm2) P (W) A (mm2)

LS-CO 8-bit 25 0.28 1.21 0.31 1.30
LS-CO 9-bit 25 0.34 1.38 0.37 1.54

learned 5-bit 15 0.15 0.61 0.18 0.69
learned 6-bit 15 0.17 0.69 0.20 0.81

19 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Power (P ) and Chip Area (A) Results Per Step

coeffs. & filter 8-bit signal 9-bit signal
word length taps P (W) A (mm2) P (W) A (mm2)

LS-CO 8-bit 25 0.28 1.21 0.31 1.30
LS-CO 9-bit 25 0.34 1.38 0.37 1.54

learned 5-bit 15 0.15 0.61 0.18 0.69
learned 6-bit 15 0.17 0.69 0.20 0.81

• > 40% power & area reduction for learned filters due to fewer taps and bits

19 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Power (P ) and Chip Area (A) Results Per Step

coeffs. & filter 8-bit signal 9-bit signal
word length taps P (W) A (mm2) P (W) A (mm2)

LS-CO 8-bit 25 0.28 1.21 0.31 1.30
LS-CO 9-bit 25 0.34 1.38 0.37 1.54

learned 5-bit 15 0.15 0.61 0.18 0.69
learned 6-bit 15 0.17 0.69 0.20 0.81

• > 40% power & area reduction for learned filters due to fewer taps and bits

• Estimate for 9-bit signal, 6-bit learned coefficients:

• 33 × 0.2 W = 6.6 W or ≈ 83 pJ/bit
• 33 × 0.81 mm2 = 27 mm2

19 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Power (P ) and Chip Area (A) Results Per Step

coeffs. & filter 8-bit signal 9-bit signal
word length taps P (W) A (mm2) P (W) A (mm2)

LS-CO 8-bit 25 0.28 1.21 0.31 1.30
LS-CO 9-bit 25 0.34 1.38 0.37 1.54

learned 5-bit 15 0.15 0.61 0.18 0.69
learned 6-bit 15 0.17 0.69 0.20 0.81

• > 40% power & area reduction for learned filters due to fewer taps and bits

• Estimate for 9-bit signal, 6-bit learned coefficients:

• 33 × 0.2 W = 6.6 W or ≈ 83 pJ/bit
• 33 × 0.81 mm2 = 27 mm2

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm
• [Crivelli et al., 2014]: entire RX chip is 75 mm2 with CD compensation

occupying a relatively large fraction

19 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Conclusions

20 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Conclusions

• Split-step digital backpropagation appears feasible for real-time DSP
implementation using a time-domain approach for the linear steps

• Deep learning can be used to

• jointly optimize all chromatic dispersion filters
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

20 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Conclusions

• Split-step digital backpropagation appears feasible for real-time DSP
implementation using a time-domain approach for the linear steps

• Deep learning can be used to

• jointly optimize all chromatic dispersion filters
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

Thank you!

20 / 20



References I

Crivelli, D. E., Hueda, M. R., Carrer, H. S., Del Barco, M., López, R. R., Gianni, P., Finochietto, J.,

Swenson, N., Voois, P., and Agazzi, O. E. (2014).
Architecture of a single-chip 50 Gb/s DP-QPSK/BPSK transceiver with electronic dispersion compensation
for coherent optical channels.
IEEE Trans. Circuits Syst. I: Reg. Papers, 61(4):1012–1025.

Du, L. B. and Lowery, A. J. (2010).

Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul
optical communication systems.
Opt. Express, 18(16):17075–17088.

Essiambre, R.-J. and Winzer, P. J. (2005).

Fibre nonlinearities in electronically pre-distorted transmission.
In Proc. European Conf. Optical Communication (ECOC), Glasgow, UK.

Fougstedt, C., Mazur, M., Svensson, L., Eliasson, H., Karlsson, M., and Larsson-Edefors, P. (2017a).

Time-domain digital back propagation: Algorithm and finite-precision implementation aspects.
In Proc. Optical Fiber Communication Conf. (OFC), Los Angeles, CA.

Fougstedt, C., Svensson, L., Mazur, M., Karlsson, M., and Larsson-Edefors, P. (2017b).

Finite-precision optimization of time-domain digital back propagation by inter-symbol interference
minimization.
In Proc. European Conf. Optical Communication, Gothenburg, Sweden.

Goldfarb, G. and Li, G. (2009).

Efficient backward-propagation using wavelet- based filtering for fiber backward-propagation.
Opt. Express, 17(11):814–816.

21 / 20



References II

Häger, C. and Pfister, H. D. (2018a).

Deep learning of the nonlinear Schrödinger equation in fiber-optic communications.
In Proc. IEEE Int. Symp. Information Theory (ISIT), Rome, Italy.

Häger, C. and Pfister, H. D. (2018b).

Nonlinear interference mitigation via deep neural networks.
In Proc. Optical Fiber Communication Conf. (OFC), San Diego, CA.

Ip, E. and Kahn, J. M. (2008).

Compensation of dispersion and nonlinear impairments using digital backpropagation.
J. Lightw. Technol., 26:3416–3425.

Li, L., Tao, Z., Dou, L., Yan, W., Oda, S., Tanimura, T., Hoshida, T., and Rasmussen, J. C. (2011).

Implementation efficient nonlinear equalizer based on correlated digital backpropagation.
In Proc. Optical Fiber Communication Conf. (OFC), page OWW3, Los Angeles, CA.

Li, X., Chen, X., Goldfarb, G., Mateo, E., Kim, I., Yaman, F., and Li, G. (2008).

Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal
processing.
Opt. Express, 16(2):880–888.

Martins, C. S., Bertignono, L., Nespola, A., Carena, A., Guiomar, F. P., and Pinto, A. N. (2018).

Efficient time-domain DBP using random step-size and multi-band quantization.
In Proc. Optical Fiber Communication Conf. (OFC), San Diego, CA.

Napoli, A., Maalej, Z., Sleiffer, V. A. J. M., Kuschnerov, M., Rafique, D., Timmers, E., Spinnler, B.,

Rahman, T., Coelho, L. D., and Hanik, N. (2014).
Reduced complexity digital back-propagation methods for optical communication systems.
J. Lightw. Technol., 32(7).

22 / 20



References III

Paré, C., Villeneuve, A., Bélanger, P.-A. A., and Doran, N. J. (1996).

Compensating for dispersion and the nonlinear Kerr effect without phase conjugation.
Optics Letters, 21(7):459–461.

Pillai, B. S. G., Sedighi, B., Guan, K., Anthapadmanabhan, N. P., Shieh, W., Hinton, K. J., and Tucker,

R. S. (2014).
End-to-end energy modeling and analysis of long-haul coherent transmission systems.
J. Lightw. Technol., 32(18):3093–3111.

Rafique, D., Zhao, J., and Ellis, A. D. (2011).

Digital back-propagation for spectrally efficient wdm 112 gbit/s pm m-ary qam transmission.
Opt. Express, 19(6):5219–5224.

Roberts, K., Li, C., Strawczynski, L., O’Sullivan, M., and Hardcastle, I. (2006).

Electronic precompensation of optical nonlinearity.
IEEE Photon. Technol. Lett., 18(2):403–405.

Secondini, M., Rommel, S., Meloni, G., Fresi, F., Forestieri, E., and Poti, L. (2016).

Single-step digital backpropagation for nonlinearity mitigation.
Photon. Netw. Commun., 31(3):493–502.

Sheikh, A., Fougstedt, C., Graell i Amat, A., Johannisson, P., Larsson-Edefors, P., and Karlsson, M. (2016).

Dispersion compensation FIR filter with improved robustness to coefficient quantization errors.
J. Lightw. Technol., 34(22):5110–5117.

Yan, W., Tao, Z., Dou, L., Li, L., Oda, S., Tanimura, T., Hoshida, T., and Rasmussen, J. C. (2011).

Low complexity digital perturbation back-propagation.
In Proc. European Conf. Optical Communication (ECOC), page Tu.3.A.2, Geneva, Switzerland.

23 / 20



References IV

Zhu, L., Li, X., Mateo, E., and Li, G. (2009).

Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission.
IEEE Photon. Technol. Lett., 21(5):292–294.

24 / 20


	Introduction to Digital Backpropagation
	Connection between Deep Learning and Digital Backpropagation
	Joint Chromatic Dispersion Filter Optimization
	ASIC Implementation Aspects
	Results: Performance, Power Consumption, and Chip Area
	Conclusions

