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requires roughly 6.6 W of power or ≈ 83 pJ/bit in 28-nm CMOS

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm

Key ingredients

1. No FFT/IFFT: We use finite-impulse response (FIR) filters to compensate
for CD-induced pulse broadening in each step.

2. Deep learning: The FIR filters are jointly optimized and quantized using
machine-learning tools.

3. No step-reducing approaches: 64-step DBP (2 steps per span) would
consume only marginally more power, not 2× more.
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[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

• Intuitive, but . . .

• . . . this corresponds to flattening a deep (multi-layer) computation graph

• Machine learning: deep computation graphs work much better and are
more parameter efficient than shallow ones
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How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}? Deep learning

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk) (1)
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[Häger and Pfister, 2018a]

[Martins et al., 2018]

Nontrivial to achieve a good performance–complexity tradeoff!

Example for Rsymb = 10.7 Gbaud, L = 2000 km [Ip and Kahn, 2008]

• ≫ 1000 taps required for good performance (70 taps per step)
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Our approach:
Optimize all M filters jointly
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h(1) h(2) h(M)

Aδ ...

σ1(x) = xeγ1|x|2

Aδ ...

σ2(x) = xeγ2|x|2

bbb Aδ ...

σM (x) = xeγM |x|2

mean squared error Adam optimizer, fixed learning rate

Deep learning of parameters θ = {h(1), . . . , h(M)}:

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk)
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• Fake quantization: gradient computation and parameter updates are still
performed in floating point

• Activate after the (floating-point) optimization has converged and
continue training for few more iterations

• Joint optimization of quantized impulse responses =⇒ partial
cancellation of quantization-induced frequency-response errors
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• 96-parallel VHDL implementation at 416.7 MHz clock speed (40 GHz RX
signal), synthesized using a low-power 28-nm CMOS library

• All FIR filters are fully reconfigurable

• Power estimation based on simulation of internal circuit switching statistics
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• RRC pulses (0.1 roll-off)
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• single channel

• Deep learning gives 15-tap filters with better performance

• 8–9 signal bits required in both cases, depending on performance

• Deep learning leads to significantly fewer bits for the filter taps
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• > 40% power & area reduction for learned filters due to fewer taps and bits

• Estimate for 9-bit signal, 6-bit learned coefficients:

• 33 × 0.2 W = 6.6 W or ≈ 83 pJ/bit
• 33 × 0.81 mm2 = 27 mm2

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm
• [Crivelli et al., 2014]: entire RX chip is 75 mm2 with CD compensation

occupying a relatively large fraction
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• Split-step digital backpropagation appears feasible for real-time DSP
implementation using a time-domain approach for the linear steps

• Deep learning can be used to

• jointly optimize all chromatic dispersion filters
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

Thank you!
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