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data —» modulated i

o Periodic amplification necessary = random distortions or noise

o Fiber dispersion and nonlinearity = deterministic distortions

Outline
Part 1: Error-correcting codes to ensure reliable data transmission.

Part 2: Nonlinear equalization via deep learning tools.
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Requirements for Fiber-Optic Communications
e Very high throughputs (100 Gigabits per second or higher)
e Very high net coding gains (close-to-capacity performance)

e Very low bit error rates (below 107'%)
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Requirements for Fiber-Optic Communications
e Very high throughputs (100 Gigabits per second or higher)
e Very high net coding gains (close-to-capacity performance)

e Very low bit error rates (below 107'%)

Outline: Part 1 (Coding)
1. Asymptotic performance of deterministic generalized product codes
2. Binary erasure channel vs. binary symmetric channel
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e Product code with n =195 and ¢ = 2, see [Condo et al., 2017]

1072
1078
1074
107°
1076
1077
1078
107°
10710
10711 [
10712
10713

bit error rate

08 09 10 1.1 12 13 14 15
p[-1077]

Coding and Deep Learning for High-Speed Fiber-Optic Communication Systems | Christian Hager 14 /29



Anchor-Based Decoding
000080

Simulation Results (cont.)

CHALMERS

e Product code with n =195 and ¢ = 2, see [Condo et al., 2017]

1072
1078
1074
107°
1076
1077
1078
107°
10710

bit error rate

10711 [

10712
10713

08 09 10 1.1 12 13 14 15
p[-1077]

post-processing (PP):
[Jian et al., 2014]
[Mittelholzer et al., 2016]
[Holzbaur et al., 2017]

Coding and Deep Learning for High-Speed Fiber-Optic Communication Systems | Christian Hager 14 /29



Anchor-Based Decoding
000080

Simulation Results (cont.)

CHALMERS

e Product code with n =195 and ¢ = 2, see [Condo et al., 2017]

1072
1078
1074
107°
1076
1077
1078
107°
10710

bit error rate

10711 [

10712
10713

" conventional” T "
.............. . decoding o]

08 09 10 1.1 12 13 14 15
p[-1077]

post-processing (PP):
[Jian et al., 2014]
[Mittelholzer et al., 2016]
[Holzbaur et al., 2017]

Future work: PP for staircase
codes, complexity impact on
product decoder architecture,

Coding and Deep Learning for High-Speed Fiber-Optic Communication Systems | Christian Hager 14 /29



Anchor-Based Decoding

00000@ CHALMERS

Part 1: Conclusions

e Asymptotic density evolution analysis possible for many deterministic
generalized product codes over the binary erasure channel

o In practice, miscorrection-free performance over the binary symmetric
channel can be approached with anchor-based decoding
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distortions channel inversion

e Dispersion: different wavelengths travel at different speeds (linear)

o Kerr effect: refractive index changes with signal intensity (nonlinear)
Outline: Part 2 (Deep Learning)

1. Channel modeling and digital backpropagation

2. Machine learning for complexity-reduced digital backpropagation
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Split-step Fourier method:

1 for j = 1:M
2 y = ifft(H.*xfft(y)); ’ group velocity dispersion
3 y = y.*exp(li*gamma*delta*abs(y). 2); % Kerr effect
4 end
Linear equalization:
1 y = ifft(Htilde.*£ft(y)); % Htilde = H x H * ... * H
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3 y = y.*exp(lixgammaxdelta*xabs(y)."2); % Kerr effect
4 end

Linear equalization:

1 y = ifft(Htilde.*fft(y)); % Htilde = H * H * ... * H ‘

At least M times more complex than linear equalization due to FFT/IFFT. J

Example: 25 x 80 km spans, 1 step per span =—> > 25X increased complexity
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1 for j = 1:M

2 y = ifft(H.*fft(y)); % group velocity dispersion

3 y = y.*exp(lixgammaxdelta*xabs(y)."2); % Kerr effect
4 end

Linear equalization: (already very power-hungry DSP block)

1 y = ifft(Htilde.*fft(y)); % Htilde = H * H * ... * H ‘

At least M times more complex than linear equalization due to FFT/IFFT. J

Example: 25 x 80 km spans, 1 step per span =—> > 25X increased complexity
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Complexity-Reduced Digital Backpropagation

Literature (randomly sampled):

® “with only four steps for the entire link ..."” [Du and Lowery, 2010]
® “we report up to 80% reduction in required back-propagation steps” [Rafique et al., 2011]
® ‘“one novel method is proposed to reduce the required stage number down to 1/4”
[Li et al., 2011]
® ‘it reduces 85% back-propagation stages [...]" [Yan et al., 2011]
® “considerably reduces the number of spans needed by digital backpropagation”
[Napoli et al., 2014]
® ‘“single-step digital backpropagation” [Secondini et al., 2016]
® “a straightforward way to reduce the complexity is to reduce the number of [...] stages”
[Nakashima et al., 2017]
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® “with only four steps for the entire link ..."” [Du and Lowery, 2010]
® “we report up to 80% reduction in required back-propagation steps” [Rafique et al., 2011]
® ‘“one novel method is proposed to reduce the required stage number down to 1/4”
[Li et al., 2011]
® ‘it reduces 85% back-propagation stages [...]" [Yan et al., 2011]
® “considerably reduces the number of spans needed by digital backpropagation”
[Napoli et al., 2014]
® ‘“single-step digital backpropagation” [Secondini et al., 2016]
® “a straightforward way to reduce the complexity is to reduce the number of [...] stages”
[Nakashima et al., 2017]

Interest over time

Are many steps really that inefficient? )

Nets

Google trends for “deep learning”
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Supervised Learning

handwritten digit recognition (MNIST: 70,000 images)

HIqIO|S| /] | & | o |

cooo000000
coocooooowo N
FREOROORN—

How to choose fy(y)? Deep feed-forward neural networks J
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activation function
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How to choose fy(y)? Deep feed-forward neural networks J

How to optimize § = {W® ... . Ww® p®  5©}1? Deep learning J
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ménz Loss(fo(y'”), &) £ g(0)  using Oxi1 =0k — AVog(0) (1)
=1
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finite impulse response (FIR) filter
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— folded implementation
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Time-Domain Digital Backpropagation

Complexity estimate in [Ip and Kahn, 2008] for 25 x 80 km using filters J
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Complexity estimate in [Ip and Kahn, 2008] for 25 x 80 km using filters J

Linear equalization (47 taps for 2000 km):
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Time-Domain Digital Backpropagation

Complexity estimate in [Ip and Kahn, 2008] for 25 x 80 km using filters J

Linear equalization (47 taps for 2000 km):
S ELELLLLLL L L EEEEE e

Digital backpropagation (25 times 70 taps for 80 km):

>

=—> > 100 times more operations per data symbol
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Deep learning of parameters § = {W® .. WO
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mean squared error Adam optimizer, learning rate A = 0.001
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Results

25 X 80 km standard single-mode fiber, 16-QAM single polarization, root-
raised cosine pulses (0.1 roll-off), 10.7 Gbaud, 2 samples/symbol processing
T T T T v

effective SNR [dB]
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e Density evolution for deterministic codes over the binary erasure channel

o In practice, miscorrection-free performance over the binary symmetric
channel can be approached with anchor-based decoding
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Conclusions

Part 1. Coding
e Density evolution for deterministic codes over the binary erasure channel

o In practice, miscorrection-free performance over the binary symmetric
channel can be approached with anchor-based decoding

Part 2: Deep learning
o Split-step Fourier method leads to a deep feed-forward neural network

e Joint filter optimization can be solved by applying deep learning to
significantly reduce the number of required filter taps

Thank you!

FIORCE Duke

FIBER-OPTIC COMMUNICATIONS
RESEARCH CENTER UNIVERSITY
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